Stable nuclear expression of ATP8 and ATP6 genes rescues a mtDNA Complex V null mutant

نویسندگان

  • Amutha Boominathan
  • Shon Vanhoozer
  • Nathan Basisty
  • Kathleen Powers
  • Alexandra L. Crampton
  • Xiaobin Wang
  • Natalie Friedricks
  • Birgit Schilling
  • Martin D. Brand
  • Matthew S. O'Connor
چکیده

We explore the possibility of re-engineering mitochondrial genes and expressing them from the nucleus as an approach to rescue defects arising from mitochondrial DNA mutations. We have used a patient cybrid cell line with a single point mutation in the overlap region of the ATP8 and ATP6 genes of the human mitochondrial genome. These cells are null for the ATP8 protein, have significantly lowered ATP6 protein levels and no Complex V function. Nuclear expression of only the ATP8 gene with the ATP5G1 mitochondrial targeting sequence appended restored viability on Krebs cycle substrates and ATP synthesis capabilities but, failed to restore ATP hydrolysis and was insensitive to various inhibitors of oxidative phosphorylation. Co-expressing both ATP8 and ATP6 genes under similar conditions resulted in stable protein expression leading to successful integration into Complex V of the oxidative phosphorylation machinery. Tests for ATP hydrolysis / synthesis, oxygen consumption, glycolytic metabolism and viability all indicate a significant functional rescue of the mutant phenotype (including re-assembly of Complex V) following stable co-expression of ATP8 and ATP6 Thus, we report the stable allotopic expression, import and function of two mitochondria encoded genes, ATP8 and ATP6, resulting in simultaneous rescue of the loss of both mitochondrial proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic dysfunction of MT-ATP6 causes axonal Charcot-Marie-Tooth disease.

OBJECTIVE Charcot-Marie-Tooth (CMT) disease is the most common inherited neuromuscular disorder, affecting 1 in 2,500 individuals. Mitochondrial DNA (mtDNA) mutations are not generally considered within the differential diagnosis of patients with uncomplicated inherited neuropathy, despite the essential requirement of ATP for axonal function. We identified the mtDNA mutation m.9185T>C in MT-ATP...

متن کامل

F1-dependent translation of mitochondrially encoded Atp6p and Atp8p subunits of yeast ATP synthase.

The ATP synthase of yeast mitochondria is composed of 17 different subunit polypeptides. We have screened a panel of ATP synthase mutants for impaired expression of Atp6p, Atp8p, and Atp9p, the only mitochondrially encoded subunits of ATP synthase. Our results show that translation of Atp6p and Atp8p is activated by F(1) ATPase (or assembly intermediates thereof). Mutants lacking the alpha or b...

متن کامل

Genetic diversity of ATP8 and ATP6 genes is associated with high-altitude adaptation in yak.

ATP synthase 8 (ATP8) and ATPase synthase 6 (ATP6) play an important role in mitochondrial ATPase assembly. Mutations in either of these units could affect the ATP processing and the respiration chain in mitochondria. To find out if there were differences in gene diversity between Tibetan yaks and domestic cattle, we sequenced the ATP8 and ATP6 genes in 66 Tibetan yaks and 81 domestic cattle. W...

متن کامل

Novel mitochondrial mutations in the ATP6 and ATP8 genes in patients with breast cancer

The role of the mitochondria in the process of carcinogenesis, mainly oxidative phosphorylation, mostly concerns their participation in the production of free radicals and ATP and in the process of apoptosis. The purpose of this study was to detect potential changes in the genes encoding the subunits 6 and 8 of the ATP synthase and their impact on the enzyme's biochemical properties, structure ...

متن کامل

Aep3p-dependent translation of yeast mitochondrial ATP8

Translation of mitochondrial gene products in Saccharomyces cerevisiae depends on mRNA-specific activators that bind to the 5' untranslated regions and promote translation on mitochondrial ribosomes. Here we find that Aep3p, previously shown to stabilize the bicistronic ATP8-ATP6 mRNA and facilitate initiation of translation from unformylated methionine, also activates specifically translation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2016